

Department of genetics

Lude Franke > Gene expression analysis using microarrays and RNA-seq

Department of Genetics, UMC Groningen

The dramatic consequences of gene regulation in biology:

Eukaryotic gene expression regulation

Gene expression determines

- Physiological status (nutrition, environment)
- Sex and age
- Various tissues and cell types
- Response to stimuli (drugs, signals, toxins)
- Health and disease
- underlying pathogenic diversity
- progression and response to treatment
- patient classes of varying prospects

Oligonucleotide array (Microarray or GeneChip)

Cancer of the blood or bone marrow

Characterized by an abnormal proliferation (production by multiplication) of blood cells, usually white blood cells (leukocytes).

Leukemia

Quantile Normalization

Different samples

Seven years of GWAS studies

Gene atlas

Functional follow-up

Common strategy:

Knock-down, knock-out, overexpression assay in:

- Cell line
- Model organism

Advantages:

- One single perturbation
- Different perturbations possible
- Many potential read-outs
- Cost-effective

Disadvantages:

- Effects in vitro the same as in vivo?
- Effect of knock-out the same of SNP variant?
- Effects in model organism comparable to humans?

Functional Follow up

 Possible to observe measurable effect for SNPs with a very small effect size (e.g. 1.1)?
Don't we need many samples?

Genetical genomics: High-throughput systematic approach to gain insight in the effects of genetic variants on gene, protein and metabolite expression.

Functional Follow up

Genetical genomics: What is an eQTL?

Trans-eQTL

A few cis-eQTL examples:

Effects of CNVs on cis-gene expression (GBP3, 45 JPT samples)

Chromosome 1

cis-eQTLs: celiac disease

Hunt et al, 2008, Nature Genetics: 9 associated loci (cis-eQTL analysis in 119 samples)

Dubois et al, 2010, Nature Genetics: 40 associated loci

cis-eQTL study conducted in peripheral blood (1,469 unrelated individuals):

50% of loci affect gene expression in cis.

cis-eQTLs: celiac disease

cis-eQTLs: Effects can differ between tissues

SNP rs2186366 (chr. 22, 22584113 bp) affects DDT

Fehrmann et al, PLoS Genetics 2011 Fu *et al*, PLoS Genetics 2012

Genetic variants can affect non-coding genes (lincRNAs)

Effect of age related macula degeneration SNP rs13278062

A few trans-eQTL examples

trans-eQTLs:TID SNP affects anti-viral gene network

nature September 2010

A *trans*-acting locus regulates an anti-viral expression network and type 1 diabetes risk

Matthias Heinig^{1,2}*, Enrico Petretto^{3,4}*, Chris Wallace⁵, Leonardo Bottolo^{3,4}, Maxime Rotival⁶, Han Lu³, Yoyo Li³, Rizwan Sarwar³, Sarah R. Langley³, Anja Bauerfeind¹, Oliver Hummel¹, Young-Ae Lee^{1,7}, Svetlana Paskas¹, Carola Rintisch¹, Kathrin Saar¹, Jason Cooper⁵, Rachel Buchan³, Elizabeth E. Gray⁸, Jason G. Cyster⁸, Cardiogenics Consortium[†], Jeanette Erdmann⁹, Christian Hengstenberg¹⁰, Seraya Maouche⁶, Willem H. Ouwehand^{11,12}, Catherine M. Rice¹², Nilesh J. Samani¹³, Heribert Schunkert⁹, Alison H. Goodall¹³, Herbert Schulz¹, Helge G. Roider², Martin Vingron², Stefan Blankenberg¹⁴, Thomas Münzel¹⁴, Tanja Zeller¹⁴, Silke Szymczak¹⁵, Andreas Ziegler¹⁵, Laurence Tiret⁶, Deborah J. Smyth⁵, Michal Pravenec¹⁶, Timothy J. Aitman³, Francois Cambien⁶, David Clayton⁵, John A. Todd⁵, Norbert Hubner^{1,17} & Stuart A. Cook^{3,18}

rs9585056 near Epstein–Barr virus induced gene 2 (EBI2):

- Affects interferon regulatory factor 7 (IRF) driven inflammatory network
- Associated with type I diabetes ($P = 7 \times 10^{-10}$)

trans-eQTLs:TID SNP affects anti-viral gene network

trans-eQTLs: HDL and T2D SNP: master regulator

nature genetics Small et al, 2011

Identification of an imprinted master *trans* regulator at the *KLF14* locus related to multiple metabolic phenotypes

Kerrin S Small^{1,2,10}, Åsa K Hedman^{3,10}, Elin Grundberg^{1,2,10}, Alexandra C Nica⁴, Gudmar Thorleifsson⁵, Augustine Kong⁵, Unnur Thorsteindottir^{5,6}, So-Youn Shin², Hannah B Richards⁷, the GIANT Consortium⁸, the MAGIC Investigators⁸, the DIAGRAM Consortium⁸, Nicole Soranzo^{1,2}, Kourosh R Ahmadi¹, Cecilia M Lindgren³, Kari Stefansson^{5,6,10}, Emmanouil T Dermitzakis^{4,10}, Panos Deloukas^{2,10}, Timothy D Spector^{1,10} & Mark I McCarthy^{3,7,9,10} for the MuTHER Consortium⁸

trans-eQTLs: Mean platelet volume & blood coagulation

Trans effects of mean platelet volume SNPs

(1,469 peripheral blood samples)

LACTB

Many trans-eQTLs found in 1,469 samples

SNP chromosome position →

Scaling up to 5,300 samples: Work in progress

Scaling up: eQTL mapping in 7,508 primary blood samples

Discovery:	Dataset	Country	Sample Size
	Groningen	The Netherlands	1,469
	Rotterdam Study	The Netherlands	762
	Estonian Biobank	Estonia	891
	SHIP-Trend	Germany	963
	DILGOM	Finland	509
	InChianti	United Kingdom / Italy	611
	Heart and Vascular Health Study	USA	106

Meta-analysis 5,311

Replication:	Dataset	Country	Sample Size
	KORA F4	Germany	740
	BSGS	Australia	892
	Monocytes (Julian Knight)	United Kingdom	283
	B-Cells (Julian Knight)	United Kingdom	282
		Total	2,197

eQTL properties

eQTL properties

cis-eQTL enhancer enrichment (Haploreg)

trans-eQTL enhancer enrichment

One trans-eQTL highlighted: SLE

Genes involved in complement

Type I Interferon response genes Enrichment of IKZF1 binding (Wilcoxon P = 0.05)

Do it yourself:

How to conduct an eQTL study

Conducting an eQTL study is not very difficult:

- Collect genotype data
- Collect gene expression data
- Correlate SNP genotypes with expression levels.

Two considerations:

- Sample mix-ups might have actually have happened
- A considerable amount of expression variation is not genetically determined, but due to differences in physiological or metabolic state

Sample mix-ups: how to identify them

Assumed plate layout

	1	2	3	4	5	6
A	65	101	70	106	68	103
В	54	108	63	112	58	110
С	42	115	52	41	47	37
D	113	45	40	53	36	48
E	107	55	111	64	109	62
F	100	66	104	71	102	69

Actual plate layout

Sample mix-ups: how to identify them

Frequency distribution before sample mix-up correction:

Overall Z-score heatmap before sample mix-up correction:

Frequency distribution after sample mix-up correction:

Self - other (null distribution)

Signal-to-noise ratio

Self - self

Overall Z-score heatmap after sample mix-up correction:

Choy *et al*, PLoS Genetics 2009 Westra et al, Bioinformatics, 2011

Sample mix-ups: related samples

Stranger *et al*, Science 2007 Westra et al, Bioinformatics, 2011

Sample mix-ups: do they happen?

eQTL datasets with mix-ups

Effect of correcting for these mix-ups

Sample mix-ups: effect of sample mix-up correction

Choy et al dataset, all 270 HapMap samples

Choy *et al*, PLoS Genetics 2009 Westra et al, Bioinformatics, 2011

Comparing same samples using different platforms

Stranger *et al*, Science 2007 Choy *et al*, PLoS Genetics 2009 Westra et al, Bioinformatics, 2011 Large proportion of expression variation is determined by genetic variation but due to e.g.:

- Physiological state of samples
- Environmental state of samples (e.g. fasting vs. non-fasting)

HapMap Population	Original data	After sample mix-up identification and correction	After mix-up correction and removal of physiological and metabolic components
CEU	558	558	717
YRI	274	287	383
CHB+JPT	138	418	661
Meta- analysis	1277	1508	1995
			56% increase in EQTLS detectable eQTLS

nature April 2010

Transcriptome genetics using second generation sequencing in a Caucasian population

Stephen B. Montgomery^{1,2}, Micha Sammeth³, Maria Gutierrez-Arcelus¹, Radoslaw P. Lach², Catherine Ingle², James Nisbett², Roderic Guigo³ & Emmanouil T. Dermitzakis^{1,2}

Understanding mechanisms underlying human gene expression variation with RNA sequencing

Joseph K. Pickrell¹, John C. Marioni¹, Athma A. Pai¹, Jacob F. Degner¹, Barbara E. Engelhardt², Everlyne Nkadori^{1,3}, Jean-Baptiste Veyrieras¹, Matthew Stephens^{1,4}, Yoav Gilad¹ & Jonathan K. Pritchard^{1,3}

Observations:

- RNA-sequencing can interrogate entire transcriptome
- Possible to investigate allele-specific expression
- With limited read-depth accurate gene expression levels can be established

eQTLs in single-end, paired-end and deepSAGE data

exon YUTR 3'

Zhernakova et al, submitted