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From caterpillar to butterfly

The dramatic consequences of gene regulation in biology:

Same genome, but:

Different tiss
ues

Different physiology

Different expression pattern
Koninginnenpage (Papilio machaon)



Eukaryotic gene expression regulation
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Gene expression determines a lot

• Physiological status (nutrition, environment)
• Sex and age
• Various tissues and cell types
• Response to stimuli (drugs, signals, toxins)
• Health and disease
– underlying pathogenic diversity
– progression and response to treatment
– patient classes of varying prospects

Gene expression determines



Oligonucleotide array (Microarray or GeneChip)
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Leukemia

Genotype RNA Eiwitten / Metabolieten Fenotype

Epigenetica

Genotype RNA Proteins / Metabolites Phenotype

Deletion

Duplication

Cancer of the blood or bone marrow 
Characterized by an abnormal proliferation 
(production by multiplication) of blood cells, 
usually white blood cells (leukocytes).

Leukemia
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Leukemia

Why important:
- Crucial to distinguish between ALL & 
  AML: Require different treatments
- Identification of diagnostic genes
- Insight in affected genes & pathways

Acute lymphoblastic 
leukemia (ALL)

Acute myeloid
leukemia (AML)
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Quantile Normalization

Before normalization

After normalization

Different samples



Gene atlas
6,054 

disease
associations

Teri Manolio et al: A catalog of published genome-wide association studies

Seven years of GWAS studies

Causal ge
nes mostly u

nknown

Downstream effects m
ostly u

nclear



Expression
level

(Disease) phenotype

Methylation
level

Genetic level SNP A SNP B

Gene Y

Gene Y

Gene Z

Gene Z

Disease

Functional follow-up

Functional
Follow up

Goal: Elucidate the downstream 

pathways th
at are

 affected



Functional follow-up

Common strategy:

Knock-down, knock-out, 
overexpression assay in:
- Cell line
- Model organism

Advantages:
- One single perturbation
- Different perturbations possible
- Many potential read-outs
- Cost-effective

Disadvantages:
- Effects in vitro the same as in vivo?
- Effect of knock-out the same of SNP variant?
- Effects in model organism comparable to humans?
- Possible to observe measurable effect for SNPs 
  with a very small effect size (e.g. 1.1)? 
  Don’t we need many samples?

Functional

Follow up



Functional follow-up: genetical genomics

Genetical genomics: High-throughput 
systematic approach to gain insight in 
the effects of genetic variants on gene, 
protein and metabolite expression.

Functional

Follow up



Genetical genomics: What is an eQTL?

5’ 3’

Cis-eQTL

Trans-eQTL



cis-eQTLs

5’ 3’

A few cis-eQTL examples:



cis-eQTLs: CNVs and SNPs

Effects of CNVs on cis-gene expression (GBP3, 45 JPT samples)

Stranger et al, Science 2007

Chromosome 1

SNP significance threshold

CNV significance threshold



cis-eQTLs: celiac disease

Hunt et al, 2008, Nature Genetics: 9 associated loci (cis-eQTL analysis in 119 samples)
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Associated Locus 
2q11-12

rs917997

Dubois et al, 2010, Nature Genetics: 40 associated loci

cis-eQTL study conducted in peripheral blood (1,469 unrelated individuals): 

50% of loci affect gene expression in cis.



cis-eQTLs: celiac disease

Immune  gene clusters
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cis-eQTLs: Effects can differ between tissues

Fehrmann et al, PLoS Genetics 2011
Fu et al, PLoS Genetics 2012

SNP rs2186366 (chr. 22, 22584113 bp) affects DDT

Blood
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es, and can even 
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Genetic variants can affect non-coding genes (lincRNAs)

Kumar et al, PLoS Genetics 2013

LincRNA LOC389641 Protein coding TNFRSF10A

Effect of age related macula degeneration SNP rs13278062

P = 4.31 x 10-32 P = 4.21 x 10-4



trans-eQTLs

A few trans-eQTL examples
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trans-eQTLs: T1D SNP affects anti-viral gene network

rs9585056 near Epstein–Barr virus induced gene 2  (EBI2):

- Affects interferon regulatory factor 7 (IRF) driven inflammatory network

- Associated with type 1 diabetes (P = 7 x 10-10)

September 2010



trans-eQTLs: T1D SNP affects anti-viral gene network

Chromosome 13q32

-lo
g 1

0(
P) T1D association

cis-eQTL effect

IRF7 driven inflammatory 
gene network



trans-eQTLs: HDL and T2D SNP: master regulator

Small et al, 2011

APH1B ARSD C8orf82 GNB1 KLF13

rs4731702 (KLF14)

MYL5 NINJ2 PRMT2 SLC7A10TPMT

HDL, Triglycerides T2D LDLLDL, Waist-hip ratio HDL, Waist-hip raitoSNPs  near genes associated with:

Significantly affects trans-genes:

rs4731702 associated with T2D and HDL levels:



trans-eQTLs: Mean platelet volume & blood coagulation

Blood coagulation genes: 

Is C19orf33 a blood 

coagulation gene as w
ell?

Trans effects of mean platelet volume SNPs 
(1,469 peripheral blood samples)

Fehrmann et al, PLoS Genetics 2011



Many trans-eQTLs found in 1,469 samples

Fehrmann et al, PLoS Genetics 2011



Scaling up to 5,300 samples: Work in progress

Many more trans-eQTLs. 

Previously id
entified trans-

eQTLs can
 be replicate

d

Westra et al, In preparation



Scaling up: eQTL mapping in 7,508 primary blood samples

Dataset Country Sample Size

Groningen The Netherlands 1,469

Rotterdam Study The Netherlands 762

Estonian Biobank Estonia 891

SHIP-Trend Germany 963

DILGOM Finland 509

InChianti United Kingdom / Italy 611

Heart and Vascular Health Study USA 106

Meta-analysis 5,311

Dataset Country Sample Size

KORA F4 Germany 740

BSGS Australia 892

Monocytes (Julian Knight) United Kingdom 283

B-Cells (Julian Knight) United Kingdom 282

Total 2,197

Discovery:

Replication:

Westra et al, revision in preparation



eQTL properties

Westra et al, revision in preparation

Legend:
Cis-eQTL probes
Non cis-eQTL probes

Probe rank by mean expression 
(bins of 2,000 probes)
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eQTL properties

cis-eQTL enhancer enrichment (Haploreg)

Lymphoid
cell line

Myeloid
cell line

trans-eQTL enhancer enrichment 

Westra et al, revision in preparation

eQTL SNPs are
 mapping 

in enhancers in myeloid 

and lymphoid cell-typ
es



One trans-eQTL highlighted: SLE

Westra et al, revision in preparation

Cause or consequence of SLE?



Trans-eQTLs detected in 5,311 blood samples

Encode ChIP-seq data o
n 

IKZF1: tran
scrip

tion facto
r is

preferentially 
binding to the 

trans-eQTL genes: Strongly 

suggests IK
ZF1 as ca

usal 

gene in this SLE locus



Conducting an eQTL study

Do it yourself:

How to conduct 
an eQTL study



Conducting an eQTL study

Conducting an eQTL study is not very difficult:
- Collect genotype data

- Collect gene expression data

- Correlate SNP genotypes with expression levels.

Two considerations:
- Sample mix-ups might have actually have happened

- A considerable amount of expression variation is not 
  genetically determined, but due to differences in 
  physiological or metabolic state



Sample mix-ups: how to identify them

!

Fig 1. (A) We observed numerous sample mix-ups in a dataset created by our lab (Wolfs et al, unpublished), where the chromosome Y expression did not 
correspond to the genotype-derived sex. (B) Four plots of cis-eQTLs mapped in the dataset from Wolfs et al showed samples 36 and 52 as outliers. These 
samples generally deviated more from the expected regression line than the other samples in this dataset. If this was a general observation over all significant 
cis-eQTLs for this dataset, we gathered evidence that something was wrong with these samples. (C) Therefore, for each cis-eQTL, we calculated the mean 
gene expression level (µ) and standard deviation (σ) per genotype (g). This allowed us to determine, per individual (i), to what extent the gene expression 
level (ei) was deviating from the regression line using an absolute Z-scorei = |ei - µgi|/σgi. By repeating these calculations for all significant cis-eQTLs, and by 
comparing all pairs of gene expression arrays and genotyping arrays, we could identify those samples that were likely to be mixed-up. (D) When we 
corrected these mix-ups we observed that the chromosome Y expression now corresponded to the sex. (E) Inspection of the RNA plate layout indicated that 
mix-ups had been introduced by pipetting mistakes 

Westra et al, Bioinformatics, 2011

What is 
going on with 

sample 36 and 52? 

Sample mix-up?



What happened to our data

Westra et al, Bioinformatics, 2011



Sample mix-ups: how to identify them

Choy et al, PLoS Genetics 2009
Westra et al, Bioinformatics, 2011



Sample mix-ups: related samples

Stranger et al, Science 2007
Westra et al, Bioinformatics, 2011



Sample mix-ups: do they happen?

eQTL datasets with mix-ups Effect of correcting for these mix-ups

On average 3% of eQTL 

samples are
 mixed-up

Westra et al, Bioinformatics, 2011



Sample mix-ups: effect of sample mix-up correction

Choy et al, PLoS Genetics 2009
Westra et al, Bioinformatics, 2011

Choy et al dataset, all 270 HapMap samples



Comparing same samples using different platforms

Stranger et al, Science 2007
Choy et al, PLoS Genetics 2009
Westra et al, Bioinformatics, 2011



Remove non-genetic expression variation

Large proportion of expression variation is determined by 
genetic variation but due to e.g.: 
- Physiological state of samples

- Environmental state of samples (e.g. fasting vs. non-fasting)

RNA blood expression 
when you wake up

RNA blood 
expression 
after diner Get rid of this ‘noise’? 

Principal co
mponent 

analysis
 correction

Dubois et al, Nature Genetics 2010



Correct for sample-mixups and non-genetic components

HapMap 
Population

Original 
data

After sample mix-up 
identification and 

correction

After mix-up correction and 
removal of physiological and 

metabolic components

CEU 558 558 717

YRI 274 287 383

CHB+JPT 138 418 661

Meta-
analysis

1277 1508 1995

56% increase in 

detectable eQTLs



RNA-sequencing

April 2010

Observations:

- RNA-sequencing can interrogate entire transcriptome

- Possible to investigate allele-specific expression

- With limited read-depth accurate gene expression levels can be established



eQTLs in single-end, paired-end and deepSAGE data

Zhernakova et al, submitted


